NAME (First,Last) : \qquad

STUDENT ID

\qquad

UW email \qquad

- Please use the same name that appears in Canvas.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of every odd page page of this exam.
- If you run out of space, continue your work on the back of the last page and indicate clearly on the problem page that you have done so.
- Unless stated otherwise, you MUST show your work and justify your answers.
- Your work needs to be neat and legible.

Problem 1 Let A be a 4×4 matrix with columns $c_{1}, c_{2}, c_{3}, c_{4}$. Suppose that by performing a sequence of elementary operations you can reduce A to

$$
B=\left(\begin{array}{cccc}
\text { (1) } & 5 & -1 & 0 \\
0 & (1) & 1 & -2 \\
0 & 0 & \text { (1) } & 2 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

1. Find the rank of A. No justification necessary.

$$
\operatorname{rank}(A)=3
$$

2. Find a basis for row (A), the row space of A .

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 5,-1,0 \\
(0 & 1 & 1,-2 \\
0 & 0 & 1,2
\end{array}\right)
\end{aligned}
$$

- 3. Find a basis for $\operatorname{Null}(\mathrm{A})$, the null space of A. Show your work.

$$
\begin{aligned}
x_{3}+2 x_{4} & =0 \rightarrow x_{3}=-2 x_{4} \\
x_{2}+x_{3}-2 x_{4} & =0 \quad \rightarrow x_{2}=-x_{3}+2 x_{4}=4 x_{4} \\
x_{1}+5 x_{2}-x_{3} & =0 \rightarrow x_{1}=-5 x_{2}+x_{3}=-22 x_{4}
\end{aligned}
$$

General solution of $A x=0$ in vector form is:

$$
\left(-22 x_{4}, 4 x_{4},-2 x_{4}, x_{4}\right)=x_{4}(-22,4,-2,1)
$$

Basis for Null(A) is ($-22,4,-2,1$) (any non zero scalar multiple of this vector would do)

NAME (First,Last) :

CONTINUED FROM THE PREVIOUS PAGE
4. Is c_{1}, c_{2}, c_{4} a basis for $\operatorname{col}(\mathrm{A})$, the column space of A ? Justify your answer.

Yes if we look et $\left[\begin{array}{ccc}1 & 5 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 2 \\ 0 & 0 & 0\end{array}\right]$
This matrix is in reduced echelon form and it hes 3
pivots $s o$ its columns are linearly independent This means $c_{1} c_{2} c_{4}$ are 3 linearly indef pendent rectors in coll) and since rank $A=3$
They form a basis for col A
Consider $T: R^{4} \rightarrow R^{4}, T(\vec{v})=A \vec{v}$, where A is the matrix from the previous page.

1. Is T onto ? Justify your answer.

No because $\operatorname{rank}(A)=3$ so
col (A) has dimension 3 and therefore it is not equal to $R 4$
2. Is T one to one ? Justify your answer.

No by unifying theorem if T is not onto it cannot be ore to one

$$
O R
$$

No because Null $(A) \neq\{0\}$ (See pert 3) or consider that nullity $(A)=4-3=1 \neq 0$)

Problem 2 This problem has two unrelated parts.
Find the matrices for 2 different linear transformations T_{1} and $T_{2}: R^{3} \rightarrow R^{2}$ both having the values $T_{1}((1,0,0))=T_{2}((1,0,0))=(2,-1)$ and $T_{1}((0,1,1))=T_{2}((0,1,1))=(1,0)$ or explain why this is not possible.
The matrix M of a linear transformation from R^{3} to R^{2} hes for columns $T\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) T\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) T\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
we know that $T\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\binom{2}{-1}$ suppose $T\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)=\binom{e}{b}$
then $T\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=T\left(\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)-\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right)=\binom{1}{0}-\binom{e}{b}=\begin{gathered}1-a \\ -b\end{gathered}$
so any matrix of the form $\left[\begin{array}{ccc}2 & a & 1-a \\ -1 & b & -b\end{array}\right]$ would work. We could here the matrix for $T_{1}, A=\left[\begin{array}{ccc}2 & 0 & 1 \\ -1 & 0 & 0\end{array}\right]$ and the matrix for $T_{2} B=\left[\begin{array}{ccc}2 & 1 & 0 \\ -1 & 0 & 0\end{array}\right] \quad \begin{aligned} & \text { (meg other } \\ & \text { answers ere possible) }\end{aligned}$
Find the matrix of the linear transformation $T: R^{2} \rightarrow R^{2}$ that rotates a vector (x,y) 180 degrees. Show your work to explain how you found this matrix..

$$
\text { we want } \begin{aligned}
& T\binom{1}{0}=\binom{0}{-1} \\
& T\binom{0}{1}=\binom{0}{-1}
\end{aligned}
$$

So $\quad M=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$

NAME (First,Last) :

Problem 3 This problem has two unrelated parts.

1. Give an example of a $3 x 3$ matrix A such that $\operatorname{Null}(A)=\operatorname{span}\left(\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right.$, and $\operatorname{col}(\mathrm{A})=\operatorname{span}\left(\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right.$), or explain why this is not possible.

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
a & b & c \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& \text { This tells us } \operatorname{cop}(A)=\operatorname{span}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \\
& \text { not ell of } a, b, c=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { We also need } A\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { so } a=0 \\
& A\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
b \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad: \quad 0
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { would work }
$$

2. Give an example of a $3 x 3$ invertible matrix A such that $\operatorname{col}(A)=\operatorname{span}\left(\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\right.$, or explain why this is not possible.

Not possible, if col $\left.A=\operatorname{spen}\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right)\right)$

$$
\text { renk } A=2 \text { not } 3 \text { so } A \text { is not invertible }
$$

